On skew cyclic codes over $F_q+vF_q+v^2F_q$
نویسندگان
چکیده
In the present paper, we study skew cyclic codes over the ring $F_{q}+vF_{q}+v^2F_{q}$, where $v^3=v,~q=p^m$ and $p$ is an odd prime. We investigate the structural properties of skew cyclic codes over $F_{q}+vF_{q}+v^2F_{q}$ using decomposition method. By defining a Gray map from $F_{q}+vF_{q}+v^2F_{q}$ to $F_{q}^3$, it has been proved that the Gray image of a skew cyclic code of length $n$ over $F_{q}+vF_{q}+v^2F_{q}$ is a skew $3$-quasi cyclic code of length $3n$ over $F_{q}$. Further, it is shown that the skew cyclic codes over $F_{q}+vF_{q}+v^2F_{q}$ are principally generated. Finally, the idempotent generators of skew cyclic codes over $F_{q}+vF_{q}+v^2F_{q}$ are also obtained.
منابع مشابه
Construction of skew cyclic and skew constacyclic codes over Fq+uFq+vFq
In this paper, skew cyclic and skew constacyclic codes over finite non-chain ring R = F_q+uF_q+vF_q, where q= p^m, p is an odd prime and u^{2}=u, v^{2}=v, uv=vu=0 are studied. We show that Gray image of a skew cyclic code of length n over R is a skew quasi-cyclic code of length 3n over F_q of index 3. Structural properties of skew cyclic and skew constacyclic over R are obtained. Further, gener...
متن کاملOn Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملConstacyclic codes over F_q + u F_q + v F_q + u v F_q
Let q be a prime power and Fq be a finite field. In this paper, we study constacyclic codes over the ring Fq + uFq + vFq + uvFq, where u 2 = u, v2 = v and uv = vu. We characterize the generator polynomials of constacyclic codes and their duals using some decomposition of this ring. Finally we study the images of self-dual cyclic codes over F2m + uF2m + vF2m + uvF2m through a linear Gray map.
متن کاملSome notes on the characterization of two dimensional skew cyclic codes
A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code. It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$. In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...
متن کاملOn the codes over the Z_3+vZ_3+v^2Z_3
In this paper, we study the structure of cyclic, quasi-cyclic, constacyclic codes and their skew codes over the finite ring R = Z3+vZ3+v 2 Z3, v 3 = v. The Gray images of cyclic, quasi-cyclic, skew cyclic, skew quasicyclic and skew constacyclic codes over R are obtained. A necessary and sufficient condition for cyclic (negacyclic) codes over R that contains its dual has been given. The paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1504.04326 شماره
صفحات -
تاریخ انتشار 2015