On skew cyclic codes over $F_q+vF_q+v^2F_q$

نویسندگان

  • Mohammad Ashraf
  • Ghulam Mohammad
چکیده

In the present paper, we study skew cyclic codes over the ring $F_{q}+vF_{q}+v^2F_{q}$, where $v^3=v,~q=p^m$ and $p$ is an odd prime. We investigate the structural properties of skew cyclic codes over $F_{q}+vF_{q}+v^2F_{q}$ using decomposition method. By defining a Gray map from $F_{q}+vF_{q}+v^2F_{q}$ to $F_{q}^3$, it has been proved that the Gray image of a skew cyclic code of length $n$ over $F_{q}+vF_{q}+v^2F_{q}$ is a skew $3$-quasi cyclic code of length $3n$ over $F_{q}$. Further, it is shown that the skew cyclic codes over $F_{q}+vF_{q}+v^2F_{q}$ are principally generated. Finally, the idempotent generators of skew cyclic codes over $F_{q}+vF_{q}+v^2F_{q}$ are also obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of skew cyclic and skew constacyclic codes over Fq+uFq+vFq

In this paper, skew cyclic and skew constacyclic codes over finite non-chain ring R = F_q+uF_q+vF_q, where q= p^m, p is an odd prime and u^{2}=u, v^{2}=v, uv=vu=0 are studied. We show that Gray image of a skew cyclic code of length n over R is a skew quasi-cyclic code of length 3n over F_q of index 3. Structural properties of skew cyclic and skew constacyclic over R are obtained. Further, gener...

متن کامل

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

Constacyclic codes over F_q + u F_q + v F_q + u v F_q

Let q be a prime power and Fq be a finite field. In this paper, we study constacyclic codes over the ring Fq + uFq + vFq + uvFq, where u 2 = u, v2 = v and uv = vu. We characterize the generator polynomials of constacyclic codes and their duals using some decomposition of this ring. Finally we study the images of self-dual cyclic codes over F2m + uF2m + vF2m + uvF2m through a linear Gray map.

متن کامل

Some notes on the characterization of two dimensional skew cyclic codes

‎‎A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code‎. ‎It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$‎. ‎In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...

متن کامل

On the codes over the Z_3+vZ_3+v^2Z_3

In this paper, we study the structure of cyclic, quasi-cyclic, constacyclic codes and their skew codes over the finite ring R = Z3+vZ3+v 2 Z3, v 3 = v. The Gray images of cyclic, quasi-cyclic, skew cyclic, skew quasicyclic and skew constacyclic codes over R are obtained. A necessary and sufficient condition for cyclic (negacyclic) codes over R that contains its dual has been given. The paramete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.04326  شماره 

صفحات  -

تاریخ انتشار 2015